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Abstract

This dissertation explores the idea of embracing a new trend in technology with existing mitiga-
tion techniques to help combat against one of the most critical cyber-attacks. Zero-day attacks
are rare; yet their nature makes them considerably difficult to mitigate. Malicious threat actors
exploit the absence of vulnerability existence to achieve their objectives. Zero-day defence tech-
niques exist and often have a high degree of effectiveness, many involve machine-learning and
exercise signature, anomaly, or behaviour-based algorithms to reduce risk. Despite this, techni-
cal frameworks are often restricted to a particular scope; for example, advanced port-monitoring
is only effective against network related zero-day attacks. The dissertation aims to encourage
Security Operations Centre-as-a-Service (SOCaaS) as a framework which can address the wider
risk landscape of zero-day attacks. It is understood that the benefits of SOCaaS relate to some
aspect of zero-day mitigation, including support for continuous monitoring, more efficient patch
rollouts, and ability to adapt mitigation strategies. To further understand this concept, pre-
dictive analysis will be performed on existing zero-day vulnerabilities; to help justify the need
for protective defence solutions. Results of this analysis will provide explanation into discover-
ing the causal-relationship between SOCaaS implementation and the quality of zero-day attack
mitigation.
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Chapter 1

Introduction

1.1 Overview

Zero-day vulnerabilities are often considered the most serious security risk, absence of existence
makes prevention considerably challenging. Risks associated with zero-day attacks are greater
when organisations are targeted; depending on the system affected, initial exploitation often
accelerates further attacks (Joshi, Singh, and Kanellopoulos, 2018). From a business-view the
risk of zero-day attack is usually overlooked when implementing security models, Woody (2013)
describes how existing security models are unsuitable for advanced attack vector mitigation. The
advancement in obfuscation techniques and frequent lack of ability to adapt to technological
evolution are just a few reasons behind the exponential rise in zero-day related breaches.

Various mitigation techniques exist; however, many are not yet implemented in business envi-
ronments. Bedell and Bouchard (2018) understands that cloud-based technology supports many
key features which can reduce the risk of zero-day attack if integrated with existing mitigation
techniques. In recent years, the wide-spread introduction of cloud technology led to conceptual
advancements in software-as-a-service, significant features include improved accessibility, scala-
bility, affordability, and compatibility. The further development and understanding of Software
as a Service (SaaS) led to the introduction of Security Operations Centre as a Service (SO-
CaaS); a concept which collates the benefits of SaaS in the form of an operational security
model. Figure 1.1 shows a Google trend search visualizing that the topic of SOCaaS has in-
creased in popularity over the last 5 years. This relatively new approach possesses advanced
improvements from both security and enterprise perspectives, however current research suggests
this is yet to be influential for businesses.

Figure 1.1: Google trend search from 2004-2020 for SOC-as-a-Service, from (Google, 2020)
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1.2 Problem Statement

How can the implementation of SOCaaS reduce the risk of successful zero-day attacks against
an organisations system?

1.3 Research Questions

This dissertation aims to answer the following questions:

1. What are the risks associated with zero-days vulnerabilities and what are current mitiga-
tion techniques?

2. How to understand why a proactive mitigation framework will improve mitigation quality?

3. How can the implementation of SOCaaS mitigate the risk of successful zero-day attacks
against an organisations system?

1.4 Research Objectives

1. To investigate zero-day attack detection and how mitigation quality is measured in SOC
environments.

2. To perform predictive data analysis on zero-day vulnerabilities, to identify future trends
and solutions, with the aim of emphasising SOCaaS importance.

3. To evaluate the causal-relationship between SOCaaS implementation and the quality of
zero-day attack mitigation.

1.5 Scope

The research aims to discover a relationship between SOCaaS implementation and the quality
of zero-day attack mitigation. Risk management involving zero-day attacks is a diverse subject,
there are many factors which can affect overall mitigation quality. For the purpose of evaluating
this relationship, the focus will consist of measuring risk of zero-day vulnerabilities. The research
will only explore methods to improve risk mitigation, and not complete prevention. This is
due to the unavoidable nature of exploitable critical system vulnerabilities. This research will

explore the properties and characteristics of recorded zero-day vulnerabilities between January
2020 and April 2021. The lack of openness from victims surrounding these types of attacks
limits the accuracy of data analysis, thus only published zero-day CVEs will be measured. The
chosen time range aims to highlight current and future trends in the zero-day landscape.

1.6 Declarations

I declare that this dissertation has been composed solely by myself and that it has not been
submitted, in whole or in part, in any previous application for a degree or anywhere else. Except
where states otherwise by citation and reference or acknowledgement, the work presented is
entirely my own.

I confirm that all tables and figures in this dissertation/proposal are my works or a regeneration
from other people’s work with citation.
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I confirm that all citations in the dissertation/proposal have been provided in the bibliography
and they are all accessible. In case that university wants to cross examine the citation, I can
provide the consent for the references which are not accessible.

I confirm that all the tools, software and datasets have been used in this dissertation/proposal
followed the terms and conditions in their license agreement and university REC code of conduct.

1.7 Conclusion

After researching existing literature in the field of risk management, a stronger focus has been
made on improving security risk models in recent years. Despite this, the increasing frequency
of zero-day related breaches is evident, emphasising the need for more proactive approaches
to cyber-security. Successful implementation of SOCaaS directly tackles the problem of so-
phisticated threats, research implies that benefits of SOCaaS relate to some aspect of zero-day
mitigation.
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Chapter 2

Literature Review

2.1 Introduction

This chapter explores existing literature to develop a deeper understanding of current percep-
tions, concepts and techniques.

2.2 Defining Advanced Persistent Threats

Specific attacks which are elaborate in nature became recognised as an Advanced Persistent
Threat (APT). The National Institute of Standards and Technology (NIST) describes APTs as:

“an adversary that possesses sophisticated levels of expertise and significant
resources which allow it to create opportunities to achieve its objectives by using

multiple attack vectors. . . ” Source: (Standards and Technology, 2012)

Research into APTs is well-established, Wrightson (2015) details the attributes and delivery
vectors associated with these attacks. Further to the levels of complication seen in the techniques
and tools used to attack, the author describes APTs as long-term, meaning a high-level of
planning is required before the aim is achieved. A publication by Tecuci, Marcu, Meckl, and
Boicu (2018) explores the idea of integrating machine-learning with manual SOC techniques to
provide automated APT detection. The research also supports Brewer (2014)’s interpretation
of APT features and qualities, the researcher claims that threat actors use sophisticated attack
techniques because they are more adaptable to defensive efforts.

The author goes further to agree that zero-day vulnerabilities are often the exploit of choice
when targets implement particularly effective defence systems. Evidence of this can be explained
through the published data of past known high-profile security breaches; an annual APT trend
review by Emm (2019) shows that many attacks involved zero-day vulnerability exploitation.

2.3 Zero-Day Attack Characteristics

By definition, a zero-day attack is a highly sophisticated threat which involves custom exploits
targeting undisclosed vulnerabilities. The term itself is a reference to the number of days
developers and vendors have to address and patch the vulnerability.

As described by Aleroud and Karabatis (2013), this exploitation technique embraces the absence
of vulnerability awareness to bypass traditional Intrusion Detection System (IDS), making this
an incredibly effective method of obtaining unauthorised access. Known associated risks include
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privilege escalation, business damage, and as evident from the infamous Stuxnet virus, physical
damage. Stuxnet was an APT which exploited four Windows zero-day vulnerabilities in a
targeted attack on Iran’s uranium enrichment facilities. Novel analysis by Al-Rabiaah (2018)
centres around the attacks sophistication by describing the exploits’ ability to damage physical
infrastructure by overloading Programmable Logic Controller (PLC). Research by Brewer (2014)
reminds us that zero-day vulnerabilities are notorious for lying dormant, a key characteristic
which Stuxnet relied on to hide activity.

Figure 2.1: Zero-Day Vulnerability Life Cycle, adopted from Vaisla and Saini (2014)

Figure 2.1 illustrates the lifecycle of zero-day vulnerabilities and emphasises the hostile and
unpredictable nature of this attack by visualising the risk of continuous exposure. Zero-day
attacks are often the vector of choice due to the high probability of success, with Brewer (2014)
further highlighting the effectiveness of combining spear-phishing with zero-day vulnerabilities.
Vaisla and Saini (2014) acknowledges this concept and explains that zero-day attacks should be
considered inevitable in the modern age of information security.

The strength of this claim is supported by Singh and Joshi (2018) with research focusing on the
sophisticated characteristics and attributes associated with zero-day exploits. The researcher
explains that threat actors recognise the act of patience when discovering zero-day vulnerabili-
ties, a concept Wrightson (2015) associates with the APT lifecycle. Coincidentally, the severity
of this attack vector has encouraged extensive research into mitigation frameworks.

2.4 Zero-Day Vulnerability Detection Techniques

Due to the unavoidable nature, current mitigation frameworks approach improving the accuracy
of various mitigation goals. Extensive literature analysis shows that many existing frameworks
target different areas to ultimately reduce risk relating to zero-days attacks. Different areas of
zero-day mitigation include vulnerability detection, exploit detection, attack path identification,
and reducing Zero-Day Attack Period (ZDAP).

A variety of techniques and frameworks have been developed to mitigate risks, and many involve
some form of machine-learning, anomaly detection, and predictive defence. Hammarberg (2014)
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describes how techniques can be classified into four main categories: behavioural, statistical,
signature and hybrid-based detection.

Basing a framework on an individual technique is highly disadvantageous because it limits
accuracy against a wider range of zero-day threats. Hammarberg (2014) acknowledges this
theory and describes signature and statistical-based techniques as static, as they lack the ability
to support changing zero-day attack vector trends. Kaur and Singh (2014) agrees and explains
that statistical-based detection techniques, like the Semantics Aware Statistical (SAS) algorithm
by Kong et al. (2011), can be easily evaded by injecting obfuscated packets into normal traffic.

Behaviour-based techniques focus on predicting future interactions by examining captured net-
work traffic. These methods often involve anomaly detection techniques like honeypots to
capture, analyse, and understand interactions outside subjectively defined behaviour groups.
Often used in combination with signature-based techniques, seen in a successful hybrid mitiga-
tion technique by (Joshi, Singh, and Kanellopoulos, 2018).

The hybrid approach to zero-day mitigation addresses the limitations of single technique frame-
works by collating benefits, leading to higher mitigation rate accuracy and a lower risk of false
positives. Table 2.1 collates important mitigation frameworks from various security researchers,
along with brief classification into the techniques implemented. A comprehensive technical
description of each framework can be found in Appendix C.

Author B A Si Sa H

Joshi, Singh, and Kanellopoulos (2018) 3 5 3 5 3

Kaur and Singh (2014) 5 3 3 5 3

Aleroud and Karabatis (2013) 3 3 3 5 5

Kong et al. (2011) 5 5 3 3 5

Sun, Dai, Liu, Singhal, and Yen (2016) 3 3 3 5 5

Blaise, Bouet, Conan, and Secci (2020) 3 3 3 5 5

Kao et al. (2015) 3 3 5 5 5

Table 2.1: Detection Methods Review Table

Key: B = Behaviour-based, A = Anomaly-based, Si = Signature-based, Sa = Statistical-based,
H = Hybrid-based

2.5 Evolution of Advanced Persistent Threats

Adapting to technological evolution is an essential method in ensuring effective threat mit-
igation. The following sections describes concepts which have increased the risk of APTs.
Addressing the following concepts is vital when developing a successful mitigation framework.

2.5.1 Vulnerability of Complexity

Cyber-criminals adapt to the changing landscape by increasing the sophistication of their ex-
ploits. A publication by Markakis (2019) acknowledges positive correlation between technology
dependency and threat complexity, and suggests reasoning lies with increasing numbers of con-
nected devices. To complement this research, Castelluccio (2015) claims this new landscape is a
result of the upward trend in IoT devices combined with the absence of security prioritization.

Research by Wrightson (2015) provides further depth to the idea by explaining that this issue
evolved from general lack of user awareness. Interpreted as the Vulnerability of Complexity; it
is understood that complication in software, hardware, and organisational infrastructure limits

10



understanding, igniting a reaction which ultimately leads to increased number of vulnerabilities.
As an example, a software experiment by Javed, Alenezi, Akour, and Alzyod (2018) supports this
idea by revealing how file and code quantity increase probability of vulnerabilities. Connecting
this idea with the probabilistic nature of zero-day threats is a clear justification for accelerating
threat complexity.

2.5.2 Objective-Value-Proportion

Another approach to understand the reasoning behind the development of APTs involves the
concept of objective-value-proportion. The theory refers to the level of subjective importance
an asset or entity holds within an organisation. Figure 2.2 visualises this concept and describes
the associated risk measurement matrix.

Figure 2.2: Objective Value Measurement Matrix

Research by Lake (2020) explains how the value of an objective should correlate to defence com-
plexity. As an example, a government server stores high-risk data and thus requires stronger
cyber defence solutions when compared to personal workstation security. The author also
addresses the idea that the increasing value of assets encouraged the growth in threat sophisti-
cation, with the study explaining that a higher defence perimeter requires more sophisticated
threats to guarantee objective success. Further to this, Woody (2013) presents another example
by describing how the advancement of technology in business environments have increased risk.
The author explains that quantity and quality of data stored has a positive correlation on risk
if exposed or leaked.

While this concept is regularly addressed in security frameworks; the changing landscape of
IT has often caused objective-value to become misunderstood. Wrightson (2015) supports this
theory and argues that security frameworks are rarely in proportion with the value of identified
objectives. Malicious intentions have evolved to cover a wider area of IT than previously
assumed; with the author explaining that even computer resources become an objective to
a willing APT hacker, referring to a discovered technique of obtaining botnets for further DDoS
attacks. Known APT objectives now include computer resources, intellectual property, essential
infrastructure systems, and government systems.

The advancement in objective-value is a likely reason behind the establishment of zero-day
vulnerability markets. Bradbury (2018) implies that the effectiveness of APTs caused an in-
crease in supply and demand for undisclosed vulnerabilities and bugs, eventually developing
into an ethically unstable marketplace. This ecosystem is an example of malicious threat actors
adapting to technological advancement by identifying the importance of objective-value.
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2.5.3 Threat Misinterpretation

Failure to adapt to evolution also results in threat misinterpretation, an important topic which
affects mitigation framework effectiveness. Previous threat documentation relied on data anal-
ysis of past security breaches; however, threat sophistication has reduced the effectiveness of
this approach.. It is understood by Woody (2013) that threat classification is a subjective topic
and involves target perspective. For definition, attacks which are subjectively more complex
than the targets security measures are recognised as advanced threats.

Elaboration of Cyber Threat Intelligence (CTI) can focus the scope of a threat to ensure detailed
classification; ultimately improving mitigation strategies. A study by Jouini, Rabai, and Aissa
(2014) recognises the importance and presents a solution to improve the relationship between
quality of CTI and threat assessment accuracy. Despite this, unknown sources of threats are
not considered in this classification architecture, limiting effectiveness to classify more advanced
threats.

In contrast, a classification model by Kolokotronis and Shiaeles (2019) supports advanced threat
identification. The focus centres around Machine-Learning based Graphical-Cyber-Security-
Models (ML-GCSM) and how merging these technologies can provide a dynamic approach to
identify unknown threats. Threat attribute identification is a key mitigation method when
involving advanced threats; Wrightson (2015) implies that growth of advanced threats is asso-
ciated with the lack of proactive threat interpretation.

2.6 Existing Approaches to Security Models

As indicated by Bedell and Bouchard (2018), the rising sophistication of threats corresponds to
a surge in more available defence tools. While this is true to some extent, Bradley (2019) argues
that current security models are outdated and generally lack aspects of the NIST Framework.
This claim is further backed by Woody (2013), who explains that current architecture is static
and inflexible, and that a reactive security approach is no longer suitable for the increasing risks
associated with organisations.

An investigation by Suby (2018) details another explanation from a business-focused perspec-
tive. While the researcher reinforces the belief that current security models are often outdated,
the study claims that the problem lies with the organisations overall attitude to enforcing secu-
rity. The focus implies organisations lack expertise, effort, resources, and personnel required to
maintain an effective security model. These particular conclusions can be used further in this
dissertation to encourage the use of out-sourced SOC environments.

Yet again, recent security trends have driven organisations to improve security tools, notably
advancements in firewalls and anti-virus software. Whilst these are effective in blocking known
malware, Bedell and Bouchard (2018) claims that such tools are ineffective against APTs. This
construct is supported by Sukwong, Kim, and Hoe (2011), who studies the effectiveness of
antivirus against various malware infections. Analysis of signature and behaviour-based detec-
tion techniques confirms that security tools will never provide 100 percent protection against
advanced threats; due to the complex understanding required. These threats are frequent in to-
day’s age and the exponential growth of zero-days can cause severe problems if targeted systems
depend solely on prevention-based tools.

Many publications recognise that businesses often fail to adapt security approaches in corre-
spondence to cyber threat evolution. This belief is explored by Bedell and Bouchard (2018),
who present a solution after a comparative analysis of alternate SOC options. They conclude
that cloud-hosted SOC overcomes the problems faced by current security models. As a result,
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the ability to recognise technological evolution in enterprise security is key to the reasoning
behind establishing more dynamic defence solutions.

2.7 Introducing the SOCaaS Framework

Across many articles, the importance of SOCaaS is explained through the advanced features it
provides with regards to threat detection and response capabilities. An early study by Alruwaili
and Gulliver (2014) introduces the concept of cloud-based SOC, along with a detailed breakdown
of framework architecture. The focus was to justify how a SOCaaS framework would ultimately
improve threat mitigation, and in turn reduce system vulnerabilities. Discussed benefits include
scalability, enhanced customer visibility and improved operational processes; all of which are
viewed as proactive security measures. Although providing a high-level analysis, this approach
to introducing SOCaaS is limited to cloud-based computing environments, and does not explore
implementation in other business infrastructure. Moreover, there is a lack of discussion relating
to financial requirements, a key factor in promoting businesses awareness.

Further analysis into associated economic advantages is supported by Suby (2018), who presents
the cost-efficiency of SOCaaS using graphical illustrations. Statistical cost-comparison is based
on interview responses from legitimate SOCaaS customers, ensuring dependable results. This
focus is critical in developing a deeper understanding into the economic factors which strengthen
views on SOCaaS. An article by Bedell and Bouchard (2018) summarises that SOCaaS provides
solutions to many limitations of alternative SOC frameworks, such as SIEM, MSS and MDR
models. Detailing these security models is a key theorem which emphasizes the benefits of
SOCaaS considerably.

The theory that SOCaaS is a suitable security model is constituted, yet it could be argued that
some studies have a subjective approach in their methods of underlining the value of SOCaaS.
Research into the requirement for more widespread adoption of cloud-based security models is
robust, yet it is evident businesses rarely take advantage. The comparison between managed
SOC and SOCaaS is well-established, Richmond (2019) clarifies that a cloud-based approach
improves on detection and response services; capabilities which are evidently lacking in current
security models. Nonetheless, there is a lack of robust research on how SOCaaS can effectively
counter more serious attack vectors. Considering the growth in threat sophistication, further
investigation into this area could lead to wider enterprise adoption.
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Chapter 3

Research Methodology

The following points provide a method and background for how the objectives will be achieved.

3.1 Objective 1

In order to meet the first objective, existing literature from articles, journals, books, and con-
ference papers will be read and reviewed to achieve a clearer understanding. Key features to
be looked at include specific areas of zero-day risk mitigation, such as exploit detection, vul-
nerability detection and current methods to reduce ZDAP. Detailing APT evolution can also
justify how advantages of introducing SOCaaS relate to aspects of zero-day mitigation, and how
such a framework can protect organisations. Papers and blogs will also be used to provide a
background to cloud-based SOC environments, with the aim of highlighting the advantages.

3.2 Objective 2

The aim is to analyse previous zero-day attacks to identify current/future trends and provide
mitigation procedures based on attribute classification. This function will be achieved by mea-
suring the following variables: target system, current status, access vector , identification date,
and CVE threat level.
The software used will be Python 3.5 because it offers many libraries dedicated to data ana-
lytics, including Matplotlib, Pandas, Numpy, and Sckit-learn. The dataset is to be obtained
from an open-source zero-day vulnerability tracking website, developed by Marchuk (2021).
Once downloaded, the dataset will be edited manually to suit the research scope. Further to
this, scripts to perform analysis will be developed using Spyder, an open-source IDE based on
the Anaconda3 package manager platform. Scripts will perform specific techniques to identify
hypothesis correlation, including descriptive analytics, linear-regression and clustering. This
analysis aims to harvest quantitative information to support further qualitative result interpre-
tation for SOCaaS teams. With this research, more information can be gathered regarding how
proactive techniques can reduce risk of zero-day attack.

3.3 Objective 3

This objective will be achieved by using qualitative data from analysis to explore how zero-day
attacks can be mitigated with higher efficiency if a SOCaaS environment is involved. Examining
the relationship between these two constructs can provide value justification, with the intention
to encourage the use of SOCaaS in business environments. The hostile nature of zero-day attacks
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means total mitigation is often non-existent; to first recognise a success matrix, principles of
measuring system intrusion are to be addressed. Identifying quality of mitigation will be in
the form of reviewing existing literature on the topic, correlation assessment will consider these
measurements factors of success. Interpretation of predictive trends can discover if the qualities
of SOCaaS can benefit zero-days risk mitigation.

3.4 Who will benefit from this research

This research can benefit any organisation which uses a form of information technology, the
basis of a zero-day attack surrounds a weakness, bug or flaw discovered in a target system.
Because these vulnerabilities are so difficult to prevent, researchers like Vaisla and Saini (2014)
consider subsequent attacks to be unavoidable. Past evidence suggests zero-day attacks are
often state-sponsored, and generally target high value systems, like government systems or
essential infrastructure services. However, because zero-day attacks are a vector associated
with APT hackers, targets can be considerably diverse. Wrightson (2015) reports the wider
range of objectives available for malicious actors to leverage have caused the threat of zero-
day attack to spread into every form of computer technology. Essentially, any organisation
which processes and stores data should be considered vulnerable, however the subjective value
of an asset has a direct correlation to risk. Research into promoting the use of cloud-hosted
SOC environments will also benefit Small and Medium Sized Enterprises (SME), a study by
Suby (2018) suggests that current security models adopted by these types of companies lack
proactive solutions to reduce risk of zero-day attacks. To achieve this, the research will also
explore economic advantages to encourage use of this theoretical framework.
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3.5 Research Methodology Flowchart

Figure 3.1: Research Methodology Flowchart
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Chapter 4

Analysis

4.1 Introduction

This section will detail the process required to apply a descriptive and predictive analytic
interpretation of data. Data was collected from an open-source zero-day vulnerability tracking
website, developed by Marchuk (2021). As per the scope of this research, zero-day vulnerabilities
between the months of January 2020 to April 2021 were documented. During this 16-month
period, a total of 49 vulnerabilities were published with complete CVE reports. Each script
output presents a graphical figure to support further qualitative interpretation. Python code
for each figure is found in Appendix E. The following measurement variables were recorded for
each published CVE.

• Target System

• Access Vector

• Time Until Patched

• Access Complexity

• CVSS 3.0 Threat Score

• Level of CIA Compromised

4.1.1 Hypotheses

These variables can be used to quantify important statistics, including threat severity and future
target vectors; further identifying the need for cloud-hosted SOC. The following table visualises
hypotheses which supports these ideas.

Hypothesis type Abbreviation Hypothesis

Alternate A1 Positive correlation between time and number of zero-days
Null A2 Negative correlation between time and number of zero-days

Alternate B1 Positive correlation between time and severity of zero-days
Null B1 Negative correlation between time and severity of zero-days

Table 4.1: Table of Hypotheses
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4.2 Number of Zero-Day Vulnerabilities

Figure 4.1 pictures the first identifiable trend; the monthly amount of recorded zero-day vul-
nerabilities has increased over the 16-month period. From the bar chart, we can see that the
rise has been somewhat steady and gradual. The noticeable absence of new vulnerabilities be-
tween the months of May to July could indicate a period of dormancy, a common characteristic
associated with zero-days.

Figure 4.1: Number of Recorded Zero-Day Vulnerabilities

Figure 4.2 shows a simple linear regression model, also comparing number of recorded zero-day
vulnerabilities per month. Linear regression is the first stage in building an effective prediction
model. A regression line can be used to make accurate predictions of future trends, directions,
and relationships between variables. Linear regression exploits the linear relationship between
two or more variables, making this script useful for predicting trends. The output of this script
visualises a gradual-positive regression line, further reinforcing hypothesis A1.

Figure 4.2: Linear Regression of Recorded Zero-Day Vulnerabilities

4.3 Severity of Zero-Day Vulnerabilities

To fully understand hypothesis B, severity metrics first need to be understood and identified.
The following sections explore techniques to quantify mitigation importance for vulnerabilities
recorded in the dataset.
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4.3.1 CVSS 3.0 Threat Score

A recognisable method to quantify vulnerability severity is provided through the Common
Vulnerability Scoring System (CVSS). This published standard offers a framework to produce
numerical scores reflecting a vulnerabilities severity. When a CVE is disclosed, analysts use
version 3.0 of this framework to assign a numerical value ranging from 0 to 10. As noted from
the specification document (FIRST.org, 2019), three metric groups are followed: base, temporal
and environmental. Base and temporal metrics are usually specified by target vector vendors
and environmental metrics are relative to the organisation.

Figure 4.3 measures CVSS 3.0 threat score across all zero-day vulnerabilities recorded over
16 months. Numerical scores are grouped to better highlight the spread of severity, very few
recorded zero-days have a threat score below 5. Most CVEs had a threat score between 7 and
7.9, representing the average. The dangerous nature of zero-day vulnerabilities is emphasised
through the evidently higher quantity of CVEs with a score between 9 and 10, the highest
possible metric.

Figure 4.3: Measuring CVSS Threat Level

Figure 4.4 confirms that most recorded CVEs are measured with a high threat level. However,
the scatter graph shows little correlation between time and threat CVSS score, with the average
linear regression line showing a very gradual upwards slope. Over the 16-month analysis period,
the average CVE is measured at 8. Measuring CVSS threat score alone does not provide enough
data to answer hypothesis B, meaning different metrics must be used for justification.

Figure 4.4: Comparing CVSS Threat Level to Target Vector
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4.3.2 Attack Complication

Figure 4.8 visualises CVE attack complexity against the monthly number of recorded vulnera-
bilities. A vulnerability with a low level of attack complexity holds much more risk, due to the
higher likelihood of exploitation, thus justifying a higher severity. Low attack complexity allows
a vulnerability to be exploited by a larger range of individuals, a result of lower level of technical
knowledge required. The bar chart shows that very few recorded CVEs require high difficulty to
exploit, reinforcing hypothesis B1 by visualizing an increase in zero-day vulnerabilities requiring
low levels of attack complication.

Figure 4.5: Measuring Zero-Day Vulnerability Complexity

4.3.3 Confidentiality, Integrity and Availability Triad

Figure 4.8 represents severity by measuring how zero-day vulnerabilities individually affect
target confidentiality, integrity and availability. Defied by the CVSS framework, CIA refers
to the impact metric of a successfully exploited vulnerability. This metric reflects the worst
possible outcome for the impacted target or component. Vulnerabilities with a high impact
are much more severe if exploited, compared to CVEs with low impact. The bar chart shows
an increase in the amount of zero-days which recorded having a potentially high impact on an
aspect of CIA, further providing another metric to support hypothesis B1.

Figure 4.6: Measuring CIA Impact of Discovered Zero-Days
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4.3.4 Zero-Day Attack Period

Zero-Day Attack Period (ZDAP) refers to the length of time a vulnerability is exploitable. As
a result, the longer time it takes to patch a zero-day reflects a CVEs severity. This metric is
not included in the CVSS framework, meaning ZDAP is subjective. Figure 4.7 shows that 73%
of zero-day vulnerabilities between Jan 2020 and Apr 2021 received patches within one day,
significantly reducing ZDAP and thus severity. Despite this, a considerable number of vendors
took longer than a week to patch, and 4 zero-days remain unpatched as of April 2021. This
could be a result of several factors, including cost, lack of expertise and even the organisational
impacts of patching systems.

Figure 4.7: Measuring Zero-Day Attack Period (ZDAP)

4.4 Classification of Zero-Day Vulnerabilities

Zero-day vulnerabilities can be classified using various variables, for this research we explore
target vectors and access vectors. Target vector can be grouped into three categories, browser,
operating system and software. These targets reflect which area of technology which the zero-
day could potentially target and successfully exploit. Figure 4.8 classifies the target vectors
associated with each recorded zero-day CVE. In recent months, software applications have been
the target vector for an increasing number of zero-day vulnerabilities. Figure 4.9 details further
classification of zero-day vulnerabilities in a pie chart format, including access vectors and a
deeper view into specific browser and OS types.

Figure 4.8: Measuring Zero-Day Vulnerabilities by Target Vector
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(a) Target Vectors (b) Access Vectors

(c) Target Vector by OS Type (d) Target Vector by Browser Type

Figure 4.9: Zero-Day Vulnerability Classification Pie Charts

4.5 Conclusion

After visualising data, it is clear that zero-day vulnerabilities are increasing in number and
severity. Factors of severity include ZDAP, level of CIA compromised, attack complexity and
CVSS threat score. An increasing number of vulnerabilities are software-based, with 20 CVEs
falling under this category. This data has the potential to aid a SOCaaS team by encouraging
adaptability to recommend mitigation for future vulnerabilities. The positive correlation be-
tween variables presents a difficult situation for organisations who lack the resources to setup
and maintain a SOC capable of mitigating zero-days threats.
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Chapter 5

Discussion

5.1 Introduction

This chapter explores the properties of zero-day vulnerabilities how these relate to characteristics
of SOCaaS. The benefits of SOCaaS will be explored to help identify any correlation between
implementing this mitigation framework and zero-day threat management.

5.2 Future Zero-Day Trends and Predictions

Data analysis from chapter 4 offers insight into future trends of zero-day vulnerabilities. Both
alternate hypothesis were met, with a positive correlation being discovered between time and
severity and number of zero-day vulnerabilities. The theory that zero-day vulnerabilities are
increasing in number and severity presents a considerable amount of risk towards organisations.
As mentioned previously, any organisation which processes and stores data should be considered
vulnerable to zero-day attack.

Between the period of analysis, a growing number of zero-day vulnerabilities have been dis-
covered. The simple linear regression graph shows an upward trend between time and number
of vulnerabilities publicly reported. This relationship has the potential to increase in future
months, with evidence suggesting zero-day vulnerabilities could become more common in 2021
onwards. This upward trend is also apparent with many variables of measuring severity, in-
cluding CVSS threat score and attack complexity. Analysis shows that over January 2021 and
April 2021, the average CVSS threat score is around 8. 24.4% of the total measured CVEs
scored between 9.5 and 10, the highest possible metric. This reinforces the common theory
that zero-day vulnerabilities are considered the most dangerous cyber threats in the modern IT
landscape.

5.3 Characteristics and Qualities of SOCaaS

The collaboration between SaaS and SOC introduced a new environment for virtual incident
management. SOCaaS is provided as a third-party framework to offer a more proactive approach
to security analysis, by involving human-augmented machine learning. Many well-known secu-
rity companies have now developed their own SOCaaS frameworks, with companies like AWN
and AT&T now offering outsourced security management. By design, SOCaaS brings several
benefits when compared with alternative security solutions, including notable improvements to
scalability, availability and cost. These properties all align with effective security management
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procedures, allowing this framework to provide a high level of defence against new and exist-
ing cyber threats; along with supporting general business fundamentals. Appendix D explores
operational processes which form the SOCaaS framework, as defined by Alruwaili and Gulliver
(2014).

5.3.1 Cost Efficiency

One of this security model’s greatest strength is the low-cost relative to alternative SOC solu-
tions. SIEM, MSS and MDR models all require time and resources to establish and maintain,
with this being a significant limiting factor for many organisations. For example, an effec-
tive SIEM system requires hiring security analysts, introducing new technologies, policies and
procedures, and training and expertise. Many organisations lack the budget for an internal
SOC, which may explain the lack of effective incident response capabilities among SME busi-
nesses. SOCaaS offers a solution to this problem by including all core SOC requirements under
a subscription-based service. This simplifies security management by reducing the necessary
resources required to manually introduce a SOC, also known as DIY SOC.

Suby (2018) presents a three-year Total Cost of Ownership (TCO) comparison between internal
SOC and SOCaaS provided by Arctic Wolf. The study offers an estimated breakdown of cost
components, noting that staffing related expenses represent 96% of the total cost to manually
setup a SOC. Table 5.1 presents a cost-comparison between DIY SOC and AWN SOCaaS for
three years, between small, medium and large businesses.

Size End-users AWN SOCaaS Average Cost Estimated DIY SOC Cost

Small 500 $279,000 - $346,000 $2,410,000

Medium 1000 $502,000 - $591,000 $3,000,000

Large 3000+ $1,304,000 - $1,563,000 $5,145,000

Table 5.1: AWN SOCaaS vs DIY SOC Costs - Retrieved from Suby (2018)

Principle observations highlight the affordability of outsourcing SOC services, with estimates
discovering the cost for a small organisation to maintain a DIY SOC to be 8.8 times higher
than a SOCaaS solution. DIY SOC pricing is highly volatile with many variables, including
geographical location and incremental staffing costs. In contrast, SOCaaS pricing is much more
structured and predictable, with AWN costs ranging between defined business sizes.

5.3.2 Improved Availability

The approach to outsource SOC as a cloud-based service also improves availability of security
analysis and risk assessments. Basing this framework on a cloud-based platform allows SO-
CaaS to support 24/7 monitoring and response, a critical requirement for effective mitigation
in today’s threat landscape. Continuous environment monitoring is a key step in discovering
malicious activity, SOCaaS provides 360-degree visibility by integrating System Agents to log ac-
tivity across an entire business network. These sensors are deployed through cloud-applications
and site premises to capture traffic and logs in real-time. The presence of Indicators of Com-
promise (IoC)) are much clearer when processed by SOCaaS, allowing for significantly reduced
Mean Time To Detect (MTTD) and Mean Time To Respond (MTTR) when compared to
manually integrated SOC. Many SOCaaS solutions offers simplified portals to further increase
visibility; subscribing customers have the ability to learn about their security posture from de-
tailed reports. Bedell and Bouchard (2018) also note the SOCaaS staffing model allows for 27/4
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support from a dedicated team of security professionals, providing recommended remediation
actions when a threat is discovered.

5.4 Correlation Between SOCaaS and Zero-Day Mitigation

Not only do these competitive advantages benefit customers from a business perspective, intro-
ducing SOCaaS allows for stronger mitigation for APT related threats. This section will explore
how attributes of SOCaaS relate to zero-day attack mitigation.

5.4.1 Support for Technological Evolution

Adapting to technological evolution is an essential method in ensuring effective threat miti-
gation. Zero-day threats fall under the APT category, meaning they are highly sophisticated
by nature and constantly evolving. Data analysis shows an increase in measured severity for
zero-days discovered between 2020 and 2021. To compete with the evolution of zero-day vul-
nerabilities, mitigation frameworks must be scalable enough to support rapid detection and
response. Existing SOC models often lack scalability, with many frameworks unable to miti-
gate more advanced zero-day threats. Woody (2013) suggests this is due to static and reactive
architecture causing further organisational constraints when reacting to threats with speed and
efficiency.

It is widely known that scalability is a significant attribute of cloud-hosted services, an aspect
which SOCaaS subsequently capitalises on to better support technological evolution. The SO-
CaaS framework provides a virtual, scalable environment for security professionals to analyse
security events with higher efficiency when compared to alternative solutions. This is an indirect
improvement to SOC adaptability, with the pro-activeness of cloud-hosted operations allowing
for a more direct line of response.

5.4.2 Advanced Monitoring

Many research papers discuss how zero-day vulnerabilities can be mitigated with higher effi-
ciency when continuous monitoring is present. SOCaaS supports 24/7 monitoring and activity
analysis, making this framework more effective in mitigating severe threats which often evade
traditional SOCs. Zero-day vulnerabilities have also been seen to bypass ML-based mitigation
frameworks; SOCaaS counters this by involving human-augmented machine learning, combining
technology with human intelligence to apply risk management for the newest emerging threats.
This involvement has allowed SOCaaS providers to decrease MTTD and MTTR, along with
reducing false positives.
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Chapter 6

Conclusion

To conclude, this research dissertation aimed to investigate the causal-relationship between
SOCaaS implementation and the quality of zero-day attack mitigation. The literature review
covers characteristics and evolution of zero-days to explain their increasing severity in today’s
technological landscape, noting a severe lack of association between APT risk mitigation and
current security model frameworks. When carrying out data analysis against discovered zero-
days between 2020 and 2021, we find that vulnerabilities are increasing in number and severity.
This presents a difficult situation for organisations who lack the resources to setup and maintain
an internal SOC, whilst requiring defence against these advanced vectors of attack. Existing
security architecture is found to be outdated, static and not flexible enough to successfully
mitigate more advanced threats. This research justifies how a cloud-hosted SOC framework
overcomes existing limitations, along with explaining the how attributes of SOCaaS enables
potential to support more advanced threat mitigation. Due to the unavoidable nature of zero-
days, mitigation requires consistent activity analysis and monitoring. Frameworks also need to
be proactive and scalable enough to support efficient patch response. These are both qualities
a SOCaaS solution provides due to its virtual approach to 24/7 security management, and
scalable framework offered through cloud environments. A business adopting this framework
will see notable improvements to patch deployment efficiency, increased activity analysis and
better support for technological evolution; hence protecting against the continuous growth in
zero-day related threats.
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Appendix A

Glossary of Terms

APT Advanced Persistent Threat.

CTI Cyber Threat Intelligence.

CVE Common Vulnerability and Exposures.

CVSS Common Vulnerability Scoring System.

IDE Integrated Development Environment.

IDS Intrusion Detection System.

IoC Indicators of Compromise.

IoT Internet of Things.

MDR Managed Detection and Response.

ML-GCSM Machine-Learning based Graphical-Cyber-Security-Models.

MSS Managed Security Services.

MTTD Mean Time To Detect.

MTTR Mean Time To Respond.

NIST National Institute of Standards and Technology.

PLC Programmable Logic Controller.

SaaS Software as a Service.

SIEM Security Information and Event Management.

SME Small and Medium Sized Enterprises.

SOC Security Operations Centre.

SOCaaS Security Operations Centre as a Service.

SOIDG System Object Instance Dependency Graph.

31



STF Suspicious Traffic Filter.

STG State-Transition-Graph.

TCO Total Cost of Ownership.

ZAE Zero-day Attack Evaluation.

ZDAP Zero-Day Attack Period.
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Appendix B

Gantt Chart

Figure B.1: Gantt Chart
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Appendix C

Review of Zero-Day Mitigation
Frameworks

Author Proposed Framework Description Outcome

Joshi,
Singh, and
Kanellopou-
los (2018)

Probabilistic-based
Detection and Prediction

The solution uses probabilistic-
based detection to predict the like-
lihood of successful zero-day attack
paths, along with classifying vulner-
ability severity. The authors pro-
pose three layers of framework ar-
chitecture, involving a combination
of behavioural and signature detec-
tion techniques to identify network
related zero-day threats.

96 percent
average detec-
tion rate 0.3
percent false
positive rate

Kong et al.
(2011)

The Semantics Aware
Statistical (SAS) algo-
rithm

Performs statistical analysis on sig-
nature generation processes. This
technique aims to automate poly-
morphic worm discovery by intro-
ducing a new method of signa-
ture matching. Involves two mod-
ules, semantic-aware signature ex-
traction and semantic-aware signa-
ture matching. Data is then re-
fined by the applied Hidden Markov
Model to generate State-Transition-
Graph (STG) based signatures. Al-
though the framework can accu-
rately detect worm signatures, the
authors admit the algorithm does
not support high level-obfuscation
found in more modern zero-day
worms.

Although
the frame-
work can
accurately
detect worm
signatures,
the authors
admit the al-
gorithm does
not support
high level-
obfuscation
found in
more mod-
ern zero-day
worms.
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Sun, Dai,
Liu, Sing-
hal, and Yen
(2016)

Probabilistic Identifica-
tion of Zero-day Attack
Paths

Proposed method aims to discover
zero-day attack paths by intro-
ducing a Bayesian-Network (BN)
technique to compute probabilities
against intrusion evidence. System
Object Instance Dependency Graph
(SOIDG) is crafted to form a basis
of BN analysis. Computing object
instances with high infection prob-
abilities with the Pr0bA system re-
sults in an identified zero-day attack
path.

If attack time
span is longer
than analysed
time period,
the accuracy
of generated
SOIDG will
be affected.

Aleroud and
Karabatis
(2013)

Linear Data Transforma-
tion

Three ML-based modules to ap-
proach zero-day attack detection.
Linear data transformation calcu-
lates attack probability by analysing
deviation between identified contex-
tual network activities. Probabil-
ity accuracy and anomaly detection
is measured through the applied 1-
class NN algorithm.

Low rate of
false positives
Good rate of
detecting at-
tacks

Kaur and
Singh (2014)

Hybrid Polymorphic
Worm Detection

Framework involves a combination
of signature and anomaly-based
techniques to detect and quaran-
tine zero-day worms. Suspicious
Traffic Filter (STF) passes traffic
through Sebek-enabled honeypots
to identify activity against signa-
tures. The Zero-day Attack Eval-
uation (ZAE) function specialises
in packet polymorphism and pro-
vides effective false-positive reduc-
tion. Content-based signatures are
then generated for identified zero-
day worms.

96 percent
average de-
tection rate
Almost 0 false
positives

Kao et al.
(2015)

Predictive Network De-
fence using Long-term
Port-scan Recording

Proposed Prophetic Defender (PD)
technique aims to reduce Zero-Day
Attack Period (ZDAP). Focuses se-
curing hosts by monitoring mali-
cious port activity, using honeypot-
based servers to detect evidence of
port scans. A port scan attempt
on the honeypot triggers temporary
IP block using an open-flow based
SDN switch. This block is made
permanent when multiple attempts
are discovered using the same scan.

Framework
evaluation
operated
over 6 years
shows that
this method
is 98 percent
effective when
detecting
zero-day port
scans.
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Blaise,
Bouet, Co-
nan, and
Secci (2020)

Unsupervised Port-based
Network Anomaly Detec-
tion

The proposed Split-and Merge de-
tection technique involves advanced
port monitoring using the CIDS ar-
chitecture. Focuses on zero-day bot-
net detection, using a statistical al-
gorithm to spot anomalies when ob-
serving traffic. False positives are
prevented by geographical modules
sending anomalies to a central con-
troller. Positive anomalies are con-
sidered based on their preceding lo-
cation.

Detection rate
of up to 100
percent when
tested against
5 common
botnets
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Appendix D

SOCaaS Framework Architecture

Stage Module Description

1 System Agent (SA) Virtual application or hardware appliance re-
sponsible for capturing and monitoring logs.
Including physical component logs, application
logs, user profile and activities, security logs,
and directory service logs. Data is captured and
sent in real time to the SEM module.

2 System Agent Manage-
ment (SAM)

Responsible for deployment and maintenance of
SA agents among infrastructure. Monitors and
maintains SA to SEM connectivity.

3 System Event Manage-
ment

Collects, correlates and analyses events and logs
from System Agents. Consists of four com-
ponents, Events and Logs Database (ELD),
Event Correlation (EC), Event Knowledge Base
(EKB), and Event Analysis (EA).

4 Event Response Offers detailed responses consisting of recom-
mended countermeasures according to prede-
fined rules. Security analysts available to per-
form further analysis if required.

5 Integration Agent Security policy agent which ensures operational
compatibility of cloud security devices within
the SOCaaS system. Ensures that only SOCaaS
integrated devices, services or applications are
able to perform event generation, detection and
analysis.

6 Compliance and Audit
Checking

Checks for compliance against security policies
to ensure enforcement. Continuously scans and
checks events with regulatory requirements and
customer SLA agreements.

7 Security Assessment Risk management module which determines vul-
nerability against malicious events.

8 Physical Security Moni-
toring

Allows for facility monitoring, and supports
readiness in case of a physical emergency (fire,
floods, electrical failure, etc). Connected to Per-
sonal Access Controls to monitor and log access.
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9 Reporting Reporting is a component required for every
module. Summaries all phases of events, along
with forecasts. Aggregated to a central report-
ing module. Access is available if required by
law enforcement authorities.
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Appendix E

Python Code

E.1 Figure 4.2

import matplotlib.pyplot as plt

import numpy as np

import pandas as pd

#import libraries

A = np.array([2,1,3,4,0,0,0,4,1,3,7,1,5,4,8,6])

X = np.arange(16)

plt.figure(figsize=(10, 6))

plt.xticks(np.arange(min(X), max(X)+1, 1.0),

['Jan', 'Feb', 'Mar', 'Apr', 'May', 'Jun',

'Jul', 'Aug', 'Sep', 'Oct', 'Nov', 'Dec',

'Jan', 'Feb', 'Mar', 'Apr'])

plt.yticks([1,2,3,4,5,6,7,8,9,10,11,12])

plt.bar(X, A, color="#2a9d8f")

plt.title('Number of Recorded Zero-Day Vulnerabilities', fontweight='bold')

plt.ylabel('Number of Zero-Days', fontweight='bold')

plt.xlabel('Months (2020-2021)', fontweight='bold')

plt.show()

E.2 Figure 4.3

import matplotlib.pyplot as plt

import seaborn as sns; sns.set()

import numpy as np

from sklearn.linear_model import LinearRegression

plt.style.use('ggplot')

plt.figure(figsize=(10, 6))

rng = np.random.RandomState(1)

x = np.array([1, 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16])

y = np.array([2,1,3,4,0,0,0,4,1,3,7,1,5,4,8,6])

plt.scatter(x, y);
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model = LinearRegression(fit_intercept=True)

model.fit(x[:, np.newaxis], y)

xfit = np.linspace(1, 16)

yfit = model.predict(xfit[:, np.newaxis])

plt.title("Linear Regression of Recorded Zero-Day Vulnerabilities",

fontweight='bold')

plt.scatter(x, y, color ='#2a9d8f')

plt.plot(xfit, yfit, color ='#e76f51');

plt.ylim(0.1)

plt.xticks([1, 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16],

['Jan', 'Feb', 'Mar', 'Apr', 'May', 'Jun',

'Jul', 'Aug', 'Sep', 'Oct', 'Nov', 'Dec',

'Jan', 'Feb', 'Mar', 'Apr'])

plt.ylabel("Number of Zero-Day Vulnerabilities", fontweight='bold')

plt.xlabel("Months (2020-2021)", fontweight='bold')

print("Model slope: ", model.coef_[0])

print("Model intercept:", model.intercept_)

E.3 Figure 4.4

import matplotlib.pyplot as plt

import numpy as np

import pandas as pd

#import libraries

# set width of bars

barWidth = 0.25

plt.figure(figsize=(10, 6))

# set heights of bars

browser = [1, 3, 3, 7, 1]

os = [0, 3, 7, 1, 2]

software = [1, 1, 7, 2, 9]

# Set position of bar on X axis

r1 = np.arange(len(browser))

r2 = [x + barWidth for x in r1]

r3 = [x + barWidth for x in r2]

# Make the plot

plt.bar(r1, browser, color='#2a9d8f', width=barWidth,

edgecolor='#2a9d8f', label='Browser-Based')

plt.bar(r2, os, color='#f4a261', width=barWidth,

edgecolor='#f4a261', label='OS-Based')

plt.bar(r3, software, color='#e76f51', width=barWidth,

edgecolor='#e76f51', label='Software-Based')

# Add xticks on the middle of the group bars

40



plt.ylabel('Number of Zero-Days', fontweight='bold')

plt.xlabel('CVSS 3.0 Threat Score', fontweight='bold')

plt.xticks([r + barWidth for r in range(len(browser))],

['1-4.9', '5-6.9', '7-7.9', '8-8.9','9-10'])

plt.title('Comparing CVSS Threat Level to Target Vector',

fontweight='bold')

# Create legend & Show graphic

plt.legend(title="Target Vector",loc=2, fontsize='medium',

title_fontsize='large', fancybox=True)

plt.show()

E.4 Figure 4.5

import matplotlib.pyplot as plt

import seaborn as sns; sns.set()

import numpy as np

from sklearn.linear_model import LinearRegression

plt.style.use('ggplot')

plt.figure(figsize=(10, 6))

x = np.array([1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,

21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,

38,39,40,41,42,43,44,45,46,47,48,49])

y = np.array([7.3,8.8,6.5,8.8,8.8,7.8,8.1,8.1,7.8,9.8,5.5,7.5,7.5,

7.5,9.8,6.5,10,7.8,8.8,8.8,7.8,7.8,5.5,8.8,9.6,9.8,

7.8,9.8,9.8,7,9.8,8.8,7.5,7.8,8.8,8.8,7.8,7.8,7.8,

9.8,9.8,8.8,6.1,9.8,7.2,7.8,10,8.8,4.9])

plt.scatter(x, y);

model = LinearRegression(fit_intercept=True)

plt.ylim(3)

model.fit(x[:, np.newaxis], y)

xfit = np.linspace(0, 49)

yfit = model.predict(xfit[:, np.newaxis])

plt.title("Linear Regression of CVSS Threat Scores", fontweight='bold')

plt.scatter(x, y, color ='#2a9d8f')

plt.plot(xfit, yfit, color ='#e76f51')

plt.yticks([3,4,5,6,7,8,9,10])

plt.ylabel("CVSS 3.0 Threat Score", fontweight='bold')

plt.xlabel("Amount of Zero-Day CVEs", fontweight='bold')

E.5 Figure 4.6

import matplotlib.pyplot as plt

import numpy as np

import pandas as pd
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#import libraries

plt.style.use('ggplot')

A = np.array([2,0,1,4,0,0,0,1,1,2,6,1,5,4,7,6])

B = np.array([0,1,2,0,0,0,0,2,0,1,1,0,0,0,0,0])

C = np.array([0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0])

X = np.arange(16)

plt.figure(figsize=(10, 6))

plt.xticks(np.arange(min(X), max(X)+1, 1.0),

['Jan', 'Feb', 'Mar', 'Apr', 'May', 'Jun',

'Jul', 'Aug', 'Sep', 'Oct', 'Nov', 'Dec',

'Jan', 'Feb', 'Mar', 'Apr'])

plt.bar(X, A, color="#2a9d8f", label='High')

plt.bar(X, B, color = '#f4a261', bottom = A, label ='Partial')

plt.bar(X, C, color = '#e76f51', bottom = A + B, label = 'Low')

plt.legend(title="Level of CIA Impacted",loc=2, fontsize='medium', title_fontsize='large', fancybox=True)

plt.title('Measuring CIA Impact of Discovered Zero-Days', fontweight='bold')

plt.ylabel('Number of Zero-Days', fontweight='bold')

plt.xlabel('Months (2020-2021)', fontweight='bold')

plt.show()

E.6 Figure 4.7

import matplotlib.pyplot as plt

import numpy as np

import pandas as pd

#import libraries

plt.style.use('ggplot')

#=======Measuring Zero-Day Attack Period (ZDAP)============

A = np.array([37, 1, 7, 4])

X = np.arange(4)

plt.figure(figsize=(10, 6))

plt.xticks(np.arange(min(X), max(X)+1, 1.0),

['1 Day', '< Week', '> Week', 'Not Patched'])

plt.bar(X, A, color="#2a9d8f")

plt.title('Measuring Zero-Day Attack Period (ZDAP)', fontweight='bold')

plt.ylabel('Number of Recorded Zero-Days', fontweight='bold')

plt.xlabel('Time Until Patch Released', fontweight='bold')

plt.show()

E.7 Figure 4.8

import matplotlib.pyplot as plt

import numpy as np

import pandas as pd
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#import libraries

#=========Number of Discovered Zero-days by Target Vector=============

plt.style.use('ggplot')

A = np.array([2,1,0,2,0,0,0,1,0,0,4,0,0,2,2,1])

B = np.array([0,0,2,1,0,0,0,1,0,1,3,0,3,1,1,1])

C = np.array([0,0,1,1,0,0,0,2,1,2,0,1,2,1,5,4])

X = np.arange(16)

plt.figure(figsize=(10, 6))

plt.xticks(np.arange(min(X), max(X)+1, 1.0),

['Jan', 'Feb', 'Mar', 'Apr', 'May', 'Jun',

'Jul', 'Aug', 'Sep', 'Oct', 'Nov', 'Dec',

'Jan', 'Feb', 'Mar', 'Apr'])

plt.bar(X, A, color="#2a9d8f", label='Browser-based')

plt.bar(X, B, color = '#f4a261', bottom = A, label ='OS-based')

plt.bar(X, C, color = '#e76f51', bottom = A + B, label = 'Software-based')

plt.legend(title="Target Vector",loc=2, fontsize='medium', title_fontsize='large', fancybox=True)

plt.title('Discovered Zero-Days by Target Vector', fontweight='bold')

plt.ylabel('Number of Zero-Days', fontweight='bold')

plt.xlabel('Months (2020-2021)', fontweight='bold')

plt.show()

E.8 Figure 4.9

import matplotlib.pyplot as plt

import numpy as np

import pandas as pd

#import libraries

#declare global variables

colors = ['#2a9d8f','#f4a261','#e76f51']

#-------------------Target Vectors--------------------------

OS = ['Browser-Based', 'OS-Based', 'Software-Based']

sizes = [15, 14, 20]

fig1, ax1 = plt.subplots()

ax1.pie(sizes, labels=OS, colors=colors, autopct='%1.1f%%',

shadow=False, startangle=90)

# Equal aspect ratio ensures that pie is drawn as a circle

ax1.axis('equal')

plt.tight_layout()

ax1.set_title("Target Vectors", fontweight='bold')

plt.show()

#------------Target Vector by browser--------------------------------

browsers = ['Chrome', 'Firefox', 'Internet Explorer']
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sizes = [9, 3, 3]

explode = (0, 0, 0)

fig1, ax1 = plt.subplots()

ax1.pie(sizes, labels=browsers, colors=colors, autopct='%1.1f%%',

shadow=False, startangle=90)

ax1.axis('equal')

plt.tight_layout()

ax1.set_title("Target Vector by Browser Type", fontweight='bold')

plt.show()

#---------------Target Vector by OS-----------------------

OS = ['Windows', 'Apple OS']

sizes = [7, 7]

fig1, ax1 = plt.subplots()

ax1.pie(sizes, labels=OS, colors=colors, autopct='%1.1f%%',

shadow=False, startangle=90)

ax1.axis('equal')

ax1.set_title("Target Vector by OS Type", fontweight='bold')

plt.tight_layout()

plt.show()

#----------ACCESS VECTORS PIE -----------------------------------

OS = ['Network', 'Local',]

sizes = [35, 14,]

fig1, ax1 = plt.subplots()

ax1.pie(sizes, labels=OS, colors=colors, autopct='%1.1f%%',

shadow=False, startangle=90)

ax1.axis('equal')

ax1.set_title("Access Vectors", fontweight='bold')

plt.tight_layout()

plt.show()
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